ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.07892
23
0

Change Point Detection with Copula Entropy based Two-Sample Test

3 February 2024
Jian Ma
ArXiv (abs)PDFHTML
Abstract

Change point detection is a typical task that aim to find changes in time series and can be tackled with two-sample test. Copula Entropy is a mathematical concept for measuring statistical independence and a two-sample test based on it was introduced recently. In this paper we propose a nonparametric multivariate method for multiple change point detection with the copula entropy-based two-sample test. The single change point detection is first proposed as a group of two-sample tests on every points of time series data and the change point is considered as with the maximum of the test statistics. The multiple change point detection is then proposed by combining the single change point detection method with binary segmentation strategy. We verified the effectiveness of our method and compared it with the other similar methods on the simulated univariate and multivariate data and the Nile data.

View on arXiv
Comments on this paper