20
1

Low-Cost and Real-Time Industrial Human Action Recognitions Based on Large-Scale Foundation Models

Abstract

Industrial managements, including quality control, cost and safety optimization, etc., heavily rely on high quality industrial human action recognitions (IHARs) which were hard to be implemented in large-scale industrial scenes due to their high costs and poor real-time performance. In this paper, we proposed a large-scale foundation model(LSFM)-based IHAR method, wherein various LSFMs and lightweight methods were jointly used, for the first time, to fulfill low-cost dataset establishment and real-time IHARs. Comprehensive tests on in-situ large-scale industrial manufacturing lines elucidated that the proposed method realized great reduction on employment costs, superior real-time performance, and satisfactory accuracy and generalization capabilities, indicating its great potential as a backbone IHAR method, especially for large-scale industrial applications.

View on arXiv
Comments on this paper