ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.08477
22
1

Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts

13 March 2024
Shengzhuang Chen
Jihoon Tack
Yunqiao Yang
Yee Whye Teh
Jonathan Richard Schwarz
Ying Wei
    MoE
ArXivPDFHTML
Abstract

Recent successes suggest that parameter-efficient fine-tuning of foundation models as the state-of-the-art method for transfer learning in vision, replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient fine-tuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code is publicly available.

View on arXiv
Comments on this paper