ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.09451
16
0

M&M: Multimodal-Multitask Model Integrating Audiovisual Cues in Cognitive Load Assessment

14 March 2024
Long Nguyen-Phuoc
Rénald Gaboriau
Dimitri Delacroix
Laurent Navarro
ArXivPDFHTML
Abstract

This paper introduces the M&M model, a novel multimodal-multitask learning framework, applied to the AVCAffe dataset for cognitive load assessment (CLA). M&M uniquely integrates audiovisual cues through a dual-pathway architecture, featuring specialized streams for audio and video inputs. A key innovation lies in its cross-modality multihead attention mechanism, fusing the different modalities for synchronized multitasking. Another notable feature is the model's three specialized branches, each tailored to a specific cognitive load label, enabling nuanced, task-specific analysis. While it shows modest performance compared to the AVCAffe's single-task baseline, M\&M demonstrates a promising framework for integrated multimodal processing. This work paves the way for future enhancements in multimodal-multitask learning systems, emphasizing the fusion of diverse data types for complex task handling.

View on arXiv
Comments on this paper