ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.11026
29
1

EfficientMorph: Parameter-Efficient Transformer-Based Architecture for 3D Image Registration

16 March 2024
Abu Zahid Bin Aziz
Mokshagna Sai Teja Karanam
Tushar Kataria
Shireen Elhabian
    ViT
    MedIm
ArXivPDFHTML
Abstract

Transformers have emerged as the state-of-the-art architecture in medical image registration, outperforming convolutional neural networks (CNNs) by addressing their limited receptive fields and overcoming gradient instability in deeper models. Despite their success, transformer-based models require substantial resources for training, including data, memory, and computational power, which may restrict their applicability for end users with limited resources. In particular, existing transformer-based 3D image registration architectures face three critical gaps that challenge their efficiency and effectiveness. Firstly, while mitigating the quadratic complexity of full attention by focusing on local regions, window-based attention mechanisms often fail to adequately integrate local and global information. Secondly, feature similarities across attention heads that were recently found in multi-head attention architectures indicate a significant computational redundancy, suggesting that the capacity of the network could be better utilized to enhance performance. Lastly, the granularity of tokenization, a key factor in registration accuracy, presents a trade-off; smaller tokens improve detail capture at the cost of higher computational complexity, increased memory demands, and a risk of overfitting. Here, we propose EfficientMorph, a transformer-based architecture for unsupervised 3D image registration. It optimizes the balance between local and global attention through a plane-based attention mechanism, reduces computational redundancy via cascaded group attention, and captures fine details without compromising computational efficiency, thanks to a Hi-Res tokenization strategy complemented by merging operations. Notably, EfficientMorph sets a new benchmark for performance on the OASIS dataset with 16-27x fewer parameters.

View on arXiv
Comments on this paper