ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.11125
29
13

Machine learning-based system reliability analysis with Gaussian Process Regression

17 March 2024
Lisang Zhou
Ziqian Luo
Xueting Pan
ArXivPDFHTML
Abstract

Machine learning-based reliability analysis methods have shown great advancements for their computational efficiency and accuracy. Recently, many efficient learning strategies have been proposed to enhance the computational performance. However, few of them explores the theoretical optimal learning strategy. In this article, we propose several theorems that facilitates such exploration. Specifically, cases that considering and neglecting the correlations among the candidate design samples are well elaborated. Moreover, we prove that the well-known U learning function can be reformulated to the optimal learning function for the case neglecting the Kriging correlation. In addition, the theoretical optimal learning strategy for sequential multiple training samples enrichment is also mathematically explored through the Bayesian estimate with the corresponding lost functions. Simulation results show that the optimal learning strategy considering the Kriging correlation works better than that neglecting the Kriging correlation and other state-of-the art learning functions from the literatures in terms of the reduction of number of evaluations of performance function. However, the implementation needs to investigate very large computational resource.

View on arXiv
Comments on this paper