ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.11332
27
1

Graph Machine Learning based Doubly Robust Estimator for Network Causal Effects

17 March 2024
Seyedeh Baharan Khatami
Harsh Parikh
Haowei Chen
Sudeepa Roy
Babak Salimi
    OOD
ArXivPDFHTML
Abstract

We address the challenge of inferring causal effects in social network data. This results in challenges due to interference -- where a unit's outcome is affected by neighbors' treatments -- and network-induced confounding factors. While there is extensive literature focusing on estimating causal effects in social network setups, a majority of them make prior assumptions about the form of network-induced confounding mechanisms. Such strong assumptions are rarely likely to hold especially in high-dimensional networks. We propose a novel methodology that combines graph machine learning approaches with the double machine learning framework to enable accurate and efficient estimation of direct and peer effects using a single observational social network. We demonstrate the semiparametric efficiency of our proposed estimator under mild regularity conditions, allowing for consistent uncertainty quantification. We demonstrate that our method is accurate, robust, and scalable via an extensive simulation study. We use our method to investigate the impact of Self-Help Group participation on financial risk tolerance.

View on arXiv
Comments on this paper