ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.11697
16
4

Urban Scene Diffusion through Semantic Occupancy Map

18 March 2024
Junge Zhang
Qihang Zhang
Li Zhang
Ramana Rao Kompella
Gaowen Liu
Bolei Zhou
ArXivPDFHTML
Abstract

Generating unbounded 3D scenes is crucial for large-scale scene understanding and simulation. Urban scenes, unlike natural landscapes, consist of various complex man-made objects and structures such as roads, traffic signs, vehicles, and buildings. To create a realistic and detailed urban scene, it is crucial to accurately represent the geometry and semantics of the underlying objects, going beyond their visual appearance. In this work, we propose UrbanDiffusion, a 3D diffusion model that is conditioned on a Bird's-Eye View (BEV) map and generates an urban scene with geometry and semantics in the form of semantic occupancy map. Our model introduces a novel paradigm that learns the data distribution of scene-level structures within a latent space and further enables the expansion of the synthesized scene into an arbitrary scale. After training on real-world driving datasets, our model can generate a wide range of diverse urban scenes given the BEV maps from the held-out set and also generalize to the synthesized maps from a driving simulator. We further demonstrate its application to scene image synthesis with a pretrained image generator as a prior.

View on arXiv
Comments on this paper