ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.11990
18
4

GetMesh: A Controllable Model for High-quality Mesh Generation and Manipulation

18 March 2024
Zhaoyang Lyu
Ben Fei
Jinyi Wang
Xudong Xu
Ya Zhang
Weidong Yang
Bo Dai
ArXivPDFHTML
Abstract

Mesh is a fundamental representation of 3D assets in various industrial applications, and is widely supported by professional softwares. However, due to its irregular structure, mesh creation and manipulation is often time-consuming and labor-intensive. In this paper, we propose a highly controllable generative model, GetMesh, for mesh generation and manipulation across different categories. By taking a varying number of points as the latent representation, and re-organizing them as triplane representation, GetMesh generates meshes with rich and sharp details, outperforming both single-category and multi-category counterparts. Moreover, it also enables fine-grained control over the generation process that previous mesh generative models cannot achieve, where changing global/local mesh topologies, adding/removing mesh parts, and combining mesh parts across categories can be intuitively, efficiently, and robustly accomplished by adjusting the number, positions or features of latent points. Project page is https://getmesh.github.io.

View on arXiv
Comments on this paper