ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12000
26
2

Notochord: a Flexible Probabilistic Model for Real-Time MIDI Performance

18 March 2024
Victor Shepardson
Jack Armitage
Thor Magnusson
ArXivPDFHTML
Abstract

Deep learning-based probabilistic models of musical data are producing increasingly realistic results and promise to enter creative workflows of many kinds. Yet they have been little-studied in a performance setting, where the results of user actions typically ought to feel instantaneous. To enable such study, we designed Notochord, a deep probabilistic model for sequences of structured events, and trained an instance of it on the Lakh MIDI dataset. Our probabilistic formulation allows interpretable interventions at a sub-event level, which enables one model to act as a backbone for diverse interactive musical functions including steerable generation, harmonization, machine improvisation, and likelihood-based interfaces. Notochord can generate polyphonic and multi-track MIDI, and respond to inputs with latency below ten milliseconds. Training code, model checkpoints and interactive examples are provided as open source software.

View on arXiv
Comments on this paper