ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12366
16
0

U-Net Kalman Filter (UNetKF): An Example of Machine Learning-assisted Ensemble Data Assimilation

19 March 2024
Feiyu Lu
ArXivPDFHTML
Abstract

Machine learning techniques have seen a tremendous rise in popularity in weather and climate sciences. Data assimilation (DA), which combines observations and numerical models, has great potential to incorporate machine learning and artificial intelligence (ML/AI) techniques. In this paper, we use U-Net, a type of convolutional neutral network (CNN), to predict the localized ensemble covariances for the Ensemble Kalman Filter (EnKF) algorithm. Using a 2-layer quasi-geostrophic model, U-Nets are trained using data from EnKF DA experiments. The trained U-Nets are then used to predict the flow-dependent localized error covariance matrices in U-Net Kalman Filter (UNetKF) experiments, which are compared to traditional 3-dimensional variational (3DVar), ensemble 3DVar (En3DVar) and EnKF methods. The performance of UNetKF can match or exceed that of 3DVar, En3DVar or EnKF. We also demonstrate that trained U-Nets can be transferred to a higher-resolution model for UNetKF implementation, which again performs competitively to 3DVar and EnKF, particularly for small ensemble sizes.

View on arXiv
Comments on this paper