ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12377
40
0

Online Multi-Agent Pickup and Delivery with Task Deadlines

19 March 2024
Hiroya Makino
Seigo Ito
ArXiv (abs)PDFHTML
Abstract

Managing delivery deadlines in automated warehouses and factories is crucial for maintaining customer satisfaction and ensuring seamless production. This study introduces the problem of online multi-agent pickup and delivery with task deadlines (MAPD-D), which is an advanced variant of the online MAPD problem incorporating delivery deadlines. MAPD-D presents a dynamic deadline-driven approach that includes task deadlines, with tasks being added at any time (online), thus challenging conventional MAPD frameworks. To tackle MAPD-D, we propose a novel algorithm named deadline-aware token passing (D-TP). The D-TP algorithm is designed to calculate pickup deadlines and assign tasks while balancing execution cost and deadline proximity. Additionally, we introduce the D-TP with task swaps (D-TPTS) method to further reduce task tardiness, enhancing flexibility and efficiency via task-swapping strategies. Numerical experiments were conducted in simulated warehouse environments to showcase the effectiveness of the proposed methods. Both D-TP and D-TPTS demonstrate significant reductions in task tardiness compared to existing methods, thereby contributing to efficient operations in automated warehouses and factories with delivery deadlines.

View on arXiv
Comments on this paper