ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12421
35
0

Dexterous Functional Pre-Grasp Manipulation with Diffusion Policy

19 March 2024
Tianhao Wu
Yunchong Gan
Mingdong Wu
Jingbo Cheng
Yaodong Yang
Yixin Zhu
Hao Dong
ArXivPDFHTML
Abstract

In real-world scenarios, objects often require repositioning and reorientation before they can be grasped, a process known as pre-grasp manipulation. Learning universal dexterous functional pre-grasp manipulation requires precise control over the relative position, orientation, and contact between the hand and object while generalizing to diverse dynamic scenarios with varying objects and goal poses. To address this challenge, we propose a teacher-student learning approach that utilizes a novel mutual reward, incentivizing agents to optimize three key criteria jointly. Additionally, we introduce a pipeline that employs a mixture-of-experts strategy to learn diverse manipulation policies, followed by a diffusion policy to capture complex action distributions from these experts. Our method achieves a success rate of 72.6\% across more than 30 object categories by leveraging extrinsic dexterity and adjusting from feedback.

View on arXiv
Comments on this paper