ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12572
25
8

Compound Expression Recognition via Multi Model Ensemble

19 March 2024
Jun-chen Yu
Jichao Zhu
Wangyuan Zhu
ArXivPDFHTML
Abstract

Compound Expression Recognition (CER) plays a crucial role in interpersonal interactions. Due to the existence of Compound Expressions , human emotional expressions are complex, requiring consideration of both local and global facial expressions to make judgments. In this paper, to address this issue, we propose a solution based on ensemble learning methods for Compound Expression Recognition. Specifically, our task is classification, where we train three expression classification models based on convolutional networks, Vision Transformers, and multi-scale local attention networks. Then, through model ensemble using late fusion, we merge the outputs of multiple models to predict the final result. Our method achieves high accuracy on RAF-DB and is able to recognize expressions through zero-shot on certain portions of C-EXPR-DB.

View on arXiv
Comments on this paper