ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12710
23
2

Selective, Interpretable, and Motion Consistent Privacy Attribute Obfuscation for Action Recognition

19 March 2024
Filip Ilic
Henghui Zhao
T. Pock
Richard P. Wildes
    PICV
    AAML
ArXivPDFHTML
Abstract

Concerns for the privacy of individuals captured in public imagery have led to privacy-preserving action recognition. Existing approaches often suffer from issues arising through obfuscation being applied globally and a lack of interpretability. Global obfuscation hides privacy sensitive regions, but also contextual regions important for action recognition. Lack of interpretability erodes trust in these new technologies. We highlight the limitations of current paradigms and propose a solution: Human selected privacy templates that yield interpretability by design, an obfuscation scheme that selectively hides attributes and also induces temporal consistency, which is important in action recognition. Our approach is architecture agnostic and directly modifies input imagery, while existing approaches generally require architecture training. Our approach offers more flexibility, as no retraining is required, and outperforms alternatives on three widely used datasets.

View on arXiv
Comments on this paper