ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12815
22
1

A Unified Framework for Rerandomization using Quadratic Forms

19 March 2024
Kyle Schindl
Zach Branson
ArXivPDFHTML
Abstract

In the design stage of a randomized experiment, one way to ensure treatment and control groups exhibit similar covariate distributions is to randomize treatment until some prespecified level of covariate balance is satisfied. This experimental design strategy is known as rerandomization. Most rerandomization methods utilize balance metrics based on a quadratic form vTAvv^TAvvTAv , where vvv is a vector of covariate mean differences and AAA is a positive semi-definite matrix. In this work, we derive general results for treatment-versus-control rerandomization schemes that employ quadratic forms for covariate balance. In addition to allowing researchers to quickly derive properties of rerandomization schemes not previously considered, our theoretical results provide guidance on how to choose the matrix AAA in practice. We find the Mahalanobis and Euclidean distances optimize different measures of covariate balance. Furthermore, we establish how the covariates' eigenstructure and their relationship to the outcomes dictates which matrix AAA yields the most precise mean-difference estimator for the average treatment effect. We find that the Euclidean distance is minimax optimal, in the sense that the mean-difference estimator's precision is never too far from the optimal choice, regardless of the relationship between covariates and outcomes. Our theoretical results are verified via simulation, where we find that rerandomization using the Euclidean distance has better performance in high-dimensional settings and typically achieves greater variance reduction to the mean-difference estimator than other quadratic forms.

View on arXiv
Comments on this paper