ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.12969
26
0

Entangling Machine Learning with Quantum Tensor Networks

9 January 2024
Constantijn van der Poel
Dan Zhao
ArXiv (abs)PDFHTML
Abstract

This paper examines the use of tensor networks, which can efficiently represent high-dimensional quantum states, in language modeling. It is a distillation and continuation of the work done in (van der Poel, 2023). To do so, we will abstract the problem down to modeling Motzkin spin chains, which exhibit long-range correlations reminiscent of those found in language. The Matrix Product State (MPS), also known as the tensor train, has a bond dimension which scales as the length of the sequence it models. To combat this, we use the factored core MPS, whose bond dimension scales sub-linearly. We find that the tensor models reach near perfect classifying ability, and maintain a stable level of performance as the number of valid training examples is decreased.

View on arXiv
Comments on this paper