ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13421
87
0
v1v2v3 (latest)

Caching-Augmented Lifelong Multi-Agent Path Finding

20 March 2024
Yimin Tang
Zhenghong Yu
Yi Zheng
T. K. S. Kumar
Jiaoyang Li
Sven Koenig
ArXiv (abs)PDFHTML
Abstract

Multi-Agent Path Finding (MAPF), which involves finding collision-free paths for multiple robots, is crucial in various applications. Lifelong MAPF, where targets are reassigned to agents as soon as they complete their initial objectives, offers a more accurate approximation of real-world warehouse planning. In this paper, we present a novel mechanism named Caching-Augmented Lifelong MAPF (CAL-MAPF), designed to improve the performance of Lifelong MAPF. We have developed a new map grid type called cache for temporary item storage and replacement and designed a lock mechanism for it to improve the stability of the planning solution. This cache mechanism was evaluated using various cache replacement policies and a spectrum of input task distributions. We identified three main factors significantly impacting CAL-MAPF performance through experimentation: suitable input task distribution, high cache hit rate, and smooth traffic. Overall, CAL-MAPF has demonstrated potential for performance improvements in certain task distributions, maps and agent configurations.

View on arXiv
Comments on this paper