ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13507
14
6

FMM-Attack: A Flow-based Multi-modal Adversarial Attack on Video-based LLMs

20 March 2024
Jinmin Li
Kuofeng Gao
Yang Bai
Jingyun Zhang
Shu-Tao Xia
Yisen Wang
    AAML
ArXivPDFHTML
Abstract

Despite the remarkable performance of video-based large language models (LLMs), their adversarial threat remains unexplored. To fill this gap, we propose the first adversarial attack tailored for video-based LLMs by crafting flow-based multi-modal adversarial perturbations on a small fraction of frames within a video, dubbed FMM-Attack. Extensive experiments show that our attack can effectively induce video-based LLMs to generate incorrect answers when videos are added with imperceptible adversarial perturbations. Intriguingly, our FMM-Attack can also induce garbling in the model output, prompting video-based LLMs to hallucinate. Overall, our observations inspire a further understanding of multi-modal robustness and safety-related feature alignment across different modalities, which is of great importance for various large multi-modal models. Our code is available at https://github.com/THU-Kingmin/FMM-Attack.

View on arXiv
Comments on this paper