ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13560
23
2

eRST: A Signaled Graph Theory of Discourse Relations and Organization

20 March 2024
Amir Zeldes
Tatsuya Aoyama
Yang Janet Liu
Siyao Peng
Debopam Das
Luke Gessler
ArXivPDFHTML
Abstract

In this article we present Enhanced Rhetorical Structure Theory (eRST), a new theoretical framework for computational discourse analysis, based on an expansion of Rhetorical Structure Theory (RST). The framework encompasses discourse relation graphs with tree-breaking, nonprojective and concurrent relations, as well as implicit and explicit signals which give explainable rationales to our analyses. We survey shortcomings of RST and other existing frameworks, such as Segmented Discourse Representation Theory (SDRT), the Penn Discourse Treebank (PDTB) and Discourse Dependencies, and address these using constructs in the proposed theory. We provide annotation, search and visualization tools for data, and present and evaluate a freely available corpus of English annotated according to our framework, encompassing 12 spoken and written genres with over 200K tokens. Finally, we discuss automatic parsing, evaluation metrics and applications for data in our framework.

View on arXiv
Comments on this paper