ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.13721
20
4

Large Language Models meet Network Slicing Management and Orchestration

20 March 2024
Abdulhalim Dandoush
Viswanath KumarSkandPriya
Mueen Uddin
Usman Khalil
ArXivPDFHTML
Abstract

Network slicing, a cornerstone technology for future networks, enables the creation of customized virtual networks on a shared physical infrastructure. This fosters innovation and agility by providing dedicated resources tailored to specific applications. However, current orchestration and management approaches face limitations in handling the complexity of new service demands within multi-administrative domain environments. This paper proposes a future vision for network slicing powered by Large Language Models (LLMs) and multi-agent systems, offering a framework that can be integrated with existing Management and Orchestration (MANO) frameworks. This framework leverages LLMs to translate user intent into technical requirements, map network functions to infrastructure, and manage the entire slice lifecycle, while multi-agent systems facilitate collaboration across different administrative domains. We also discuss the challenges associated with implementing this framework and potential solutions to mitigate them.

View on arXiv
Comments on this paper