ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.14376
14
0

InfNeRF: Towards Infinite Scale NeRF Rendering with O(log n) Space Complexity

21 March 2024
Jiabin Liang
Lanqing Zhang
Zhuoran Zhao
Xiangyu Xu
ArXivPDFHTML
Abstract

The conventional mesh-based Level of Detail (LoD) technique, exemplified by applications such as Google Earth and many game engines, exhibits the capability to holistically represent a large scene even the Earth, and achieves rendering with a space complexity of O(log n). This constrained data requirement not only enhances rendering efficiency but also facilitates dynamic data fetching, thereby enabling a seamless 3D navigation experience for users. In this work, we extend this proven LoD technique to Neural Radiance Fields (NeRF) by introducing an octree structure to represent the scenes in different scales. This innovative approach provides a mathematically simple and elegant representation with a rendering space complexity of O(log n), aligned with the efficiency of mesh-based LoD techniques. We also present a novel training strategy that maintains a complexity of O(n). This strategy allows for parallel training with minimal overhead, ensuring the scalability and efficiency of our proposed method. Our contribution is not only in extending the capabilities of existing techniques but also in establishing a foundation for scalable and efficient large-scale scene representation using NeRF and octree structures.

View on arXiv
Comments on this paper