ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.15454
18
3
v1v2 (latest)

Emotion Detection with Transformers: A Comparative Study

18 March 2024
Mahdi Rezapour
ArXiv (abs)PDFHTML
Abstract

In this study, we explore the application of transformer-based models for emotion classification on text data. We train and evaluate several pre-trained transformer models, on the Emotion dataset using different variants of transformers. The paper also analyzes some factors that in-fluence the performance of the model, such as the fine-tuning of the transformer layer, the trainability of the layer, and the preprocessing of the text data. Our analysis reveals that commonly applied techniques like removing punctuation and stop words can hinder model performance. This might be because transformers strength lies in understanding contextual relationships within text. Elements like punctuation and stop words can still convey sentiment or emphasis and removing them might disrupt this context.

View on arXiv
Comments on this paper