ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16132
21
1

Runtime Monitoring and Fault Detection for Neural Network-Controlled Systems

24 March 2024
Jianglin Lan
Siyuan Zhan
Ronald J. Patton
Xianxian Zhao
ArXivPDFHTML
Abstract

There is an emerging trend in applying deep learning methods to control complex nonlinear systems. This paper considers enhancing the runtime safety of nonlinear systems controlled by neural networks in the presence of disturbance and measurement noise. A robustly stable interval observer is designed to generate sound and precise lower and upper bounds for the neural network, nonlinear function, and system state. The obtained interval is utilised to monitor the real-time system safety and detect faults in the system outputs or actuators. An adaptive cruise control vehicular system is simulated to demonstrate effectiveness of the proposed design.

View on arXiv
Comments on this paper