ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16202
18
3

FH-SSTNet: Forehead Creases based User Verification using Spatio-Spatial Temporal Network

24 March 2024
Geetanjali Sharma
Gaurav Jaswal
Aditya Nigam
Raghavendra Ramachandra
    CVBM
ArXivPDFHTML
Abstract

Biometric authentication, which utilizes contactless features, such as forehead patterns, has become increasingly important for identity verification and access management. The proposed method is based on learning a 3D spatio-spatial temporal convolution to create detailed pictures of forehead patterns. We introduce a new CNN model called the Forehead Spatio-Spatial Temporal Network (FH-SSTNet), which utilizes a 3D CNN architecture with triplet loss to capture distinguishing features. We enhance the model's discrimination capability using Arcloss in the network's head. Experimentation on the Forehead Creases version 1 (FH-V1) dataset, containing 247 unique subjects, demonstrates the superior performance of FH-SSTNet compared to existing methods and pre-trained CNNs like ResNet50, especially for forehead-based user verification. The results demonstrate the superior performance of FH-SSTNet for forehead-based user verification, confirming its effectiveness in identity authentication.

View on arXiv
Comments on this paper