ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.16937
16
3

Hyperspherical Classification with Dynamic Label-to-Prototype Assignment

25 March 2024
Mohammad Saeed Ebrahimi Saadabadi
Ali Dabouei
Sahar Rahimi Malakshan
Nasser M. Nasrabadi
ArXivPDFHTML
Abstract

Aiming to enhance the utilization of metric space by the parametric softmax classifier, recent studies suggest replacing it with a non-parametric alternative. Although a non-parametric classifier may provide better metric space utilization, it introduces the challenge of capturing inter-class relationships. A shared characteristic among prior non-parametric classifiers is the static assignment of labels to prototypes during the training, ie, each prototype consistently represents a class throughout the training course. Orthogonal to previous works, we present a simple yet effective method to optimize the category assigned to each prototype (label-to-prototype assignment) during the training. To this aim, we formalize the problem as a two-step optimization objective over network parameters and label-to-prototype assignment mapping. We solve this optimization using a sequential combination of gradient descent and Bipartide matching. We demonstrate the benefits of the proposed approach by conducting experiments on balanced and long-tail classification problems using different backbone network architectures. In particular, our method outperforms its competitors by 1.22\% accuracy on CIFAR-100, and 2.15\% on ImageNet-200 using a metric space dimension half of the size of its competitors. Code: https://github.com/msed-Ebrahimi/DL2PA_CVPR24

View on arXiv
Comments on this paper