ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.18355
23
2

Supervised Multiple Kernel Learning approaches for multi-omics data integration

27 March 2024
Mitja Briscik
Gabriele Tazza
M. Dillies
László Vidács
Sébastien Dejean
    GP
ArXivPDFHTML
Abstract

Advances in high-throughput technologies have originated an ever-increasing availability of omics datasets. The integration of multiple heterogeneous data sources is currently an issue for biology and bioinformatics. Multiple kernel learning (MKL) has shown to be a flexible and valid approach to consider the diverse nature of multi-omics inputs, despite being an underused tool in genomic data mining.We provide novel MKL approaches based on different kernel fusion strategies.To learn from the meta-kernel of input kernels, we adaptedunsupervised integration algorithms for supervised tasks with support vector machines.We also tested deep learning architectures for kernel fusion and classification.The results show that MKL-based models can compete with more complex, state-of-the-art, supervised multi-omics integrative approaches. Multiple kernel learning offers a natural framework for predictive models in multi-omics genomic data. Our results offer a direction for bio-data mining research and further development of methods for heterogeneous data integration.

View on arXiv
Comments on this paper