ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.18735
19
3

Nonlinear model reduction for operator learning

27 March 2024
Hamidreza Eivazi
Stefan H. A. Wittek
Andreas Rausch
ArXivPDFHTML
Abstract

Operator learning provides methods to approximate mappings between infinite-dimensional function spaces. Deep operator networks (DeepONets) are a notable architecture in this field. Recently, an extension of DeepONet based on model reduction and neural networks, proper orthogonal decomposition (POD)-DeepONet, has been able to outperform other architectures in terms of accuracy for several benchmark tests. We extend this idea towards nonlinear model order reduction by proposing an efficient framework that combines neural networks with kernel principal component analysis (KPCA) for operator learning. Our results demonstrate the superior performance of KPCA-DeepONet over POD-DeepONet.

View on arXiv
Comments on this paper