ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.19082
194
11

Enhancing Conformal Prediction Using E-Test Statistics

28 March 2024
Alexander A. Balinsky
A. D. Balinsky
ArXiv (abs)PDFHTML
Abstract

Conformal Prediction (CP) serves as a robust framework that quantifies uncertainty in predictions made by Machine Learning (ML) models. Unlike traditional point predictors, CP generates statistically valid prediction regions, also known as prediction intervals, based on the assumption of data exchangeability. Typically, the construction of conformal predictions hinges on p-values. This paper, however, ventures down an alternative path, harnessing the power of e-test statistics to augment the efficacy of conformal predictions by introducing a BB-predictor (bounded from the below predictor).

View on arXiv
Comments on this paper