ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2403.20001
57
3

Adaptive Energy Regularization for Autonomous Gait Transition and Energy-Efficient Quadruped Locomotion

29 March 2024
Boyuan Liang
Lingfeng Sun
Xinghao Zhu
Bike Zhang
Ziyin Xiong
Yixiao Wang
Chenran Li
K. Sreenath
M. Tomizuka
ArXivPDFHTML
Abstract

In reinforcement learning for legged robot locomotion, crafting effective reward strategies is crucial. Pre-defined gait patterns and complex reward systems are widely used to stabilize policy training. Drawing from the natural locomotion behaviors of humans and animals, which adapt their gaits to minimize energy consumption, we propose a simplified, energy-centric reward strategy to foster the development of energy-efficient locomotion across various speeds in quadruped robots. By implementing an adaptive energy reward function and adjusting the weights based on velocity, we demonstrate that our approach enables ANYmal-C and Unitree Go1 robots to autonomously select appropriate gaits, such as four-beat walking at lower speeds and trotting at higher speeds, resulting in improved energy efficiency and stable velocity tracking compared to previous methods using complex reward designs and prior gait knowledge. The effectiveness of our policy is validated through simulations in the IsaacGym simulation environment and on real robots, demonstrating its potential to facilitate stable and adaptive locomotion.

View on arXiv
@article{liang2025_2403.20001,
  title={ Adaptive Energy Regularization for Autonomous Gait Transition and Energy-Efficient Quadruped Locomotion },
  author={ Boyuan Liang and Lingfeng Sun and Xinghao Zhu and Bike Zhang and Ziyin Xiong and Yixiao Wang and Chenran Li and Koushil Sreenath and Masayoshi Tomizuka },
  journal={arXiv preprint arXiv:2403.20001},
  year={ 2025 }
}
Comments on this paper