ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00408
29
2

Deep Learning with Parametric Lenses

30 March 2024
Geoffrey S. H. Cruttwell
Bruno Gavranović
Neil Ghani
Paul W. Wilson
Fabio Zanasi
ArXivPDFHTML
Abstract

We propose a categorical semantics for machine learning algorithms in terms of lenses, parametric maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as MSE and Softmax cross-entropy, and different architectures, shedding new light on their similarities and differences. Furthermore, our approach to learning has examples generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be realised in the discrete setting of Boolean and polynomial circuits. We demonstrate the practical significance of our framework with an implementation in Python.

View on arXiv
Comments on this paper