ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00473
27
14

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

30 March 2024
Shanglun Feng
Florian Tramèr
    SILM
ArXivPDFHTML
Abstract

Practitioners commonly download pretrained machine learning models from open repositories and finetune them to fit specific applications. We show that this practice introduces a new risk of privacy backdoors. By tampering with a pretrained model's weights, an attacker can fully compromise the privacy of the finetuning data. We show how to build privacy backdoors for a variety of models, including transformers, which enable an attacker to reconstruct individual finetuning samples, with a guaranteed success! We further show that backdoored models allow for tight privacy attacks on models trained with differential privacy (DP). The common optimistic practice of training DP models with loose privacy guarantees is thus insecure if the model is not trusted. Overall, our work highlights a crucial and overlooked supply chain attack on machine learning privacy.

View on arXiv
Comments on this paper