ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00704
24
3

Sponge: Inference Serving with Dynamic SLOs Using In-Place Vertical Scaling

31 March 2024
Kamran Razavi
Saeid Ghafouri
Max Mühlhäuser
Pooyan Jamshidi
Lin Wang
ArXivPDFHTML
Abstract

Mobile and IoT applications increasingly adopt deep learning inference to provide intelligence. Inference requests are typically sent to a cloud infrastructure over a wireless network that is highly variable, leading to the challenge of dynamic Service Level Objectives (SLOs) at the request level. This paper presents Sponge, a novel deep learning inference serving system that maximizes resource efficiency while guaranteeing dynamic SLOs. Sponge achieves its goal by applying in-place vertical scaling, dynamic batching, and request reordering. Specifically, we introduce an Integer Programming formulation to capture the resource allocation problem, providing a mathematical model of the relationship between latency, batch size, and resources. We demonstrate the potential of Sponge through a prototype implementation and preliminary experiments and discuss future works.

View on arXiv
Comments on this paper