ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.01431
20
1

When are Unbiased Monte Carlo Estimators More Preferable than Biased Ones?

1 April 2024
Guanyang Wang
Jose Blanchet
Peter Glynn
ArXivPDFHTML
Abstract

Due to the potential benefits of parallelization, designing unbiased Monte Carlo estimators, primarily in the setting of randomized multilevel Monte Carlo, has recently become very popular in operations research and computational statistics. However, existing work primarily substantiates the benefits of unbiased estimators at an intuitive level or using empirical evaluations. The intuition being that unbiased estimators can be replicated in parallel enabling fast estimation in terms of wall-clock time. This intuition ignores that, typically, bias will be introduced due to impatience because most unbiased estimators necesitate random completion times. This paper provides a mathematical framework for comparing these methods under various metrics, such as completion time and overall computational cost. Under practical assumptions, our findings reveal that unbiased methods typically have superior completion times - the degree of superiority being quantifiable through the tail behavior of their running time distribution - but they may not automatically provide substantial savings in overall computational costs. We apply our findings to Markov Chain Monte Carlo and Multilevel Monte Carlo methods to identify the conditions and scenarios where unbiased methods have an advantage, thus assisting practitioners in making informed choices between unbiased and biased methods.

View on arXiv
Comments on this paper