ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.02000
19
1

Africa-Centric Self-Supervised Pre-Training for Multilingual Speech Representation in a Sub-Saharan Context

2 April 2024
Antoine Caubrière
Elodie Gauthier
ArXivPDFHTML
Abstract

We present the first self-supervised multilingual speech model trained exclusively on African speech. The model learned from nearly 60 000 hours of unlabeled speech segments in 21 languages and dialects spoken in sub-Saharan Africa. On the SSA subset of the FLEURS-102 dataset, our approach based on a HuBERTbase_{base}base​ (0.09B) architecture shows competitive results, for ASR downstream task, compared to the w2v-bert-51 (0.6B) pre-trained model proposed in the FLEURS benchmark, while being more efficient by using 7x less data and 6x less parameters. Furthermore, in the context of a LID downstream task, our approach outperforms FLEURS baselines accuracy by over 22\%.

View on arXiv
Comments on this paper