ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.02637
16
8

Vocabulary Attack to Hijack Large Language Model Applications

3 April 2024
Patrick Levi
Christoph P. Neumann
    AAML
ArXivPDFHTML
Abstract

The fast advancements in Large Language Models (LLMs) are driving an increasing number of applications. Together with the growing number of users, we also see an increasing number of attackers who try to outsmart these systems. They want the model to reveal confidential information, specific false information, or offensive behavior. To this end, they manipulate their instructions for the LLM by inserting separators or rephrasing them systematically until they reach their goal. Our approach is different. It inserts words from the model vocabulary. We find these words using an optimization procedure and embeddings from another LLM (attacker LLM). We prove our approach by goal hijacking two popular open-source LLMs from the Llama2 and the Flan-T5 families, respectively. We present two main findings. First, our approach creates inconspicuous instructions and therefore it is hard to detect. For many attack cases, we find that even a single word insertion is sufficient. Second, we demonstrate that we can conduct our attack using a different model than the target model to conduct our attack with.

View on arXiv
Comments on this paper