ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.02903
30
20

LidarDM: Generative LiDAR Simulation in a Generated World

3 April 2024
Vlas Zyrianov
Henry Che
Zhijian Liu
Shenlong Wang
    VGen
ArXivPDFHTML
Abstract

We present LidarDM, a novel LiDAR generative model capable of producing realistic, layout-aware, physically plausible, and temporally coherent LiDAR videos. LidarDM stands out with two unprecedented capabilities in LiDAR generative modeling: (i) LiDAR generation guided by driving scenarios, offering significant potential for autonomous driving simulations, and (ii) 4D LiDAR point cloud generation, enabling the creation of realistic and temporally coherent sequences. At the heart of our model is a novel integrated 4D world generation framework. Specifically, we employ latent diffusion models to generate the 3D scene, combine it with dynamic actors to form the underlying 4D world, and subsequently produce realistic sensory observations within this virtual environment. Our experiments indicate that our approach outperforms competing algorithms in realism, temporal coherency, and layout consistency. We additionally show that LidarDM can be used as a generative world model simulator for training and testing perception models.

View on arXiv
Comments on this paper