ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.02928
16
29

Jailbreaking Prompt Attack: A Controllable Adversarial Attack against Diffusion Models

2 April 2024
Jiachen Ma
Anda Cao
Zhiqing Xiao
Jie Zhang
Chaonan Ye
Junbo Zhao
ArXivPDFHTML
Abstract

Text-to-Image (T2I) models have received widespread attention due to their remarkable generation capabilities. However, concerns have been raised about the ethical implications of the models in generating Not Safe for Work (NSFW) images because NSFW images may cause discomfort to people or be used for illegal purposes. To mitigate the generation of such images, T2I models deploy various types of safety checkers. However, they still cannot completely prevent the generation of NSFW images. In this paper, we propose the Jailbreak Prompt Attack (JPA) - an automatic attack framework. We aim to maintain prompts that bypass safety checkers while preserving the semantics of the original images. Specifically, we aim to find prompts that can bypass safety checkers because of the robustness of the text space. Our evaluation demonstrates that JPA successfully bypasses both online services with closed-box safety checkers and offline defenses safety checkers to generate NSFW images.

View on arXiv
Comments on this paper