ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05256
75
1

StyleForge: Enhancing Text-to-Image Synthesis for Any Artistic Styles with Dual Binding

8 April 2024
Junseo Park
Beom-Seok Ko
Hyeryung Jang
    DiffM
ArXivPDFHTML
Abstract

Recent advancements in text-to-image models, such as Stable Diffusion, have showcased their ability to create visual images from natural language prompts. However, existing methods like DreamBooth struggle with capturing arbitrary art styles due to the abstract and multifaceted nature of stylistic attributes. We introduce Single-StyleForge, a novel approach for personalized text-to-image synthesis across diverse artistic styles. Using approximately 15 to 20 images of the target style, Single-StyleForge establishes a foundational binding of a unique token identifier with a broad range of attributes of the target style. Additionally, auxiliary images are incorporated for dual binding that guides the consistent representation of crucial elements such as people within the target style. Furthermore, we present Multi-StyleForge, which enhances image quality and text alignment by binding multiple tokens to partial style attributes. Experimental evaluations across six distinct artistic styles demonstrate significant improvements in image quality and perceptual fidelity, as measured by FID, KID, and CLIP scores.

View on arXiv
Comments on this paper