ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05809
35
0

Self-Labeling in Multivariate Causality and Quantification for Adaptive Machine Learning

8 April 2024
Yutian Ren
A. Yen
G. P. Li
    CML
ArXivPDFHTML
Abstract

Adaptive machine learning (ML) aims to allow ML models to adapt to ever-changing environments with potential concept drift after model deployment. Traditionally, adaptive ML requires a new dataset to be manually labeled to tailor deployed models to altered data distributions. Recently, an interactive causality based self-labeling method was proposed to autonomously associate causally related data streams for domain adaptation, showing promising results compared to traditional feature similarity-based semi-supervised learning. Several unanswered research questions remain, including self-labeling's compatibility with multivariate causality and the quantitative analysis of the auxiliary models used in the self-labeling. The auxiliary models, the interaction time model (ITM) and the effect state detector (ESD), are vital to the success of self-labeling. This paper further develops the self-labeling framework and its theoretical foundations to address these research questions. A framework for the application of self-labeling to multivariate causal graphs is proposed using four basic causal relationships, and the impact of non-ideal ITM and ESD performance is analyzed. A simulated experiment is conducted based on a multivariate causal graph, validating the proposed theory.

View on arXiv
Comments on this paper