ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.06657
19
0

Res-U2Net: Untrained Deep Learning for Phase Retrieval and Image Reconstruction

9 April 2024
Carlos Osorio Quero
Daniel Leykam
Irving Rondon Ojeda
ArXivPDFHTML
Abstract

Conventional deep learning-based image reconstruction methods require a large amount of training data which can be hard to obtain in practice. Untrained deep learning methods overcome this limitation by training a network to invert a physical model of the image formation process. Here we present a novel untrained Res-U2Net model for phase retrieval. We use the extracted phase information to determine changes in an object's surface and generate a mesh representation of its 3D structure. We compare the performance of Res-U2Net phase retrieval against UNet and U2Net using images from the GDXRAY dataset.

View on arXiv
Comments on this paper