ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.06803
30
2

A new way to evaluate G-Wishart normalising constants via Fourier analysis

10 April 2024
Ching Wong
G. Moffa
Jack Kuipers
ArXiv (abs)PDFHTML
Abstract

The G-Wishart distribution is an essential component for the Bayesian analysis of Gaussian graphical models as the conjugate prior for the precision matrix. Evaluating the marginal likelihood of such models usually requires computing high-dimensional integrals to determine the G-Wishart normalising constant. Closed-form results are known for decomposable or chordal graphs, while an explicit representation as a formal series expansion has been derived recently for general graphs. The nested infinite sums, however, do not lend themselves to computation, remaining of limited practical value. Borrowing techniques from random matrix theory and Fourier analysis, we provide novel exact results well suited to the numerical evaluation of the normalising constant for a large class of graphs beyond chordal graphs. Furthermore, they open new possibilities for developing more efficient sampling schemes for Bayesian inference of Gaussian graphical models.

View on arXiv
Comments on this paper