ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09383
25
55

Low-Resource Named Entity Recognition with Cross-Lingual, Character-Level Neural Conditional Random Fields

14 April 2024
Ryan Cotterell
Kevin Duh
ArXivPDFHTML
Abstract

Low-resource named entity recognition is still an open problem in NLP. Most state-of-the-art systems require tens of thousands of annotated sentences in order to obtain high performance. However, for most of the world's languages, it is unfeasible to obtain such annotation. In this paper, we present a transfer learning scheme, whereby we train character-level neural CRFs to predict named entities for both high-resource languages and low resource languages jointly. Learning character representations for multiple related languages allows transfer among the languages, improving F1 by up to 9.8 points over a loglinear CRF baseline.

View on arXiv
Comments on this paper