ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09790
23
32

NTIRE 2024 Challenge on Image Super-Resolution (×\times×4): Methods and Results

15 April 2024
Zheng Chen
Zongwei Wu
Eduard Zamfir
Kai Zhang
Yulun Zhang
Radu Timofte
Xiaokang Yang
Hongyuan Yu
Cheng Wan
Yuxin Hong
Zhi-Qiu Huang
Yajun Zou
Yuan Huang
Jiamin Lin
Bingnan Han
Xianyu Guan
Yongsheng Yu
Daoan Zhang
Xuanwu Yin
Kunlong Zuo
Jinhua Hao
Kai Zhao
Kun Yuan
Mingxu Sun
Chao Zhou
Hongyu An
Xinfeng Zhang
Zhiyuan Song
Ziyue Dong
Qing Zhao
Xiaogang Xu
Pengxu Wei
Zhi-chao Dou
Guibin Wang
Chih-Chung Hsu
Chia-Ming Lee
Yi-Shiuan Chou
Cansu Korkmaz
A. Murat Tekalp
Yubin Wei
Xia Yan
Binren Li
Haonan Chen
Siqi Zhang
Si-Min Chen
Amogh Joshi
Nikhil Akalwadi
Sampada Malagi
P. Yashaswini
Chaitra Desai
R. Tabib
Ujwala Patil
U. Mudenagudi
Anjali Sarvaiya
Pooja Choksy
Jagrit Joshi
Shubh Kawa
K. Upla
Sushrut Patwardhan
Raghavendra Ramachandra
Sadat Hossain
Geongi Park
S M Nadim Uddin
Haoxie Xu
Yanhui Guo
Aman Urumbekov
X. Yan
Wei Hao
Minghan Fu
Isaac Orais
Samuel Smith
Ying Liu
Wangwang Jia
Qisheng Xu
Kele Xu
Weijun Yuan
Zhan Li
Wenqin Kuang
Ruijin Guan
Ruting Deng
Zhao Zhang
Bo Wang
Suiyi Zhao
Yan Luo
Yanyan Wei
Asif Hussain Khan
C. Micheloni
N. Martinel
    SupR
ArXivPDFHTML
Abstract

This paper reviews the NTIRE 2024 challenge on image super-resolution (×\times×4), highlighting the solutions proposed and the outcomes obtained. The challenge involves generating corresponding high-resolution (HR) images, magnified by a factor of four, from low-resolution (LR) inputs using prior information. The LR images originate from bicubic downsampling degradation. The aim of the challenge is to obtain designs/solutions with the most advanced SR performance, with no constraints on computational resources (e.g., model size and FLOPs) or training data. The track of this challenge assesses performance with the PSNR metric on the DIV2K testing dataset. The competition attracted 199 registrants, with 20 teams submitting valid entries. This collective endeavour not only pushes the boundaries of performance in single-image SR but also offers a comprehensive overview of current trends in this field.

View on arXiv
Comments on this paper