ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09946
22
5

A Note on Loss Functions and Error Compounding in Model-based Reinforcement Learning

15 April 2024
Nan Jiang
ArXivPDFHTML
Abstract

This note clarifies some confusions (and perhaps throws out more) around model-based reinforcement learning and their theoretical understanding in the context of deep RL. Main topics of discussion are (1) how to reconcile model-based RL's bad empirical reputation on error compounding with its superior theoretical properties, and (2) the limitations of empirically popular losses. For the latter, concrete counterexamples for the "MuZero loss" are constructed to show that it not only fails in stochastic environments, but also suffers exponential sample complexity in deterministic environments when data provides sufficient coverage.

View on arXiv
Comments on this paper