ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.11714
17
1

Implementation and Evaluation of a Gradient Descent-Trained Defensible Blackboard Architecture System

17 April 2024
Jordan Milbrath
Jonathan Rivard
Jeremy Straub
ArXivPDFHTML
Abstract

A variety of forms of artificial intelligence systems have been developed. Two well-known techniques are neural networks and rule-fact expert systems. The former can be trained from presented data while the latter is typically developed by human domain experts. A combined implementation that uses gradient descent to train a rule-fact expert system has been previously proposed. A related system type, the Blackboard Architecture, adds an actualization capability to expert systems. This paper proposes and evaluates the incorporation of a defensible-style gradient descent training capability into the Blackboard Architecture. It also introduces the use of activation functions for defensible artificial intelligence systems and implements and evaluates a new best path-based training algorithm.

View on arXiv
Comments on this paper