ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.13631
14
0

Fermi-Bose Machine achieves both generalization and adversarial robustness

21 April 2024
Mingshan Xie
Yuchen Wang
Haiping Huang
    AAML
ArXivPDFHTML
Abstract

Distinct from human cognitive processing, deep neural networks trained by backpropagation can be easily fooled by adversarial examples. To design a semantically meaningful representation learning, we discard backpropagation, and instead, propose a local contrastive learning, where the representation for the inputs bearing the same label shrink (akin to boson) in hidden layers, while those of different labels repel (akin to fermion). This layer-wise learning is local in nature, being biological plausible. A statistical mechanics analysis shows that the target fermion-pair-distance is a key parameter. Moreover, the application of this local contrastive learning to MNIST benchmark dataset demonstrates that the adversarial vulnerability of standard perceptron can be greatly mitigated by tuning the target distance, i.e., controlling the geometric separation of prototype manifolds.

View on arXiv
Comments on this paper