ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.13680
35
6

Zero-shot High-fidelity and Pose-controllable Character Animation

21 April 2024
Bingwen Zhu
Fanyi Wang
Tianyi Lu
Peng Liu
Jingwen Su
Jinxiu Liu
Yanhao Zhang
Zuxuan Wu
Guo-Jun Qi
Yu-Gang Jiang
    DiffM
    VGen
ArXivPDFHTML
Abstract

Image-to-video (I2V) generation aims to create a video sequence from a single image, which requires high temporal coherence and visual fidelity. However, existing approaches suffer from inconsistency of character appearances and poor preservation of fine details. Moreover, they require a large amount of video data for training, which can be computationally demanding. To address these limitations, we propose PoseAnimate, a novel zero-shot I2V framework for character animation. PoseAnimate contains three key components: 1) a Pose-Aware Control Module (PACM) that incorporates diverse pose signals into text embeddings, to preserve character-independent content and maintain precise alignment of actions. 2) a Dual Consistency Attention Module (DCAM) that enhances temporal consistency and retains character identity and intricate background details. 3) a Mask-Guided Decoupling Module (MGDM) that refines distinct feature perception abilities, improving animation fidelity by decoupling the character and background. We also propose a Pose Alignment Transition Algorithm (PATA) to ensure smooth action transition. Extensive experiment results demonstrate that our approach outperforms the state-of-the-art training-based methods in terms of character consistency and detail fidelity. Moreover, it maintains a high level of temporal coherence throughout the generated animations.

View on arXiv
Comments on this paper