ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.13948
35
26

Typos that Broke the RAG's Back: Genetic Attack on RAG Pipeline by Simulating Documents in the Wild via Low-level Perturbations

22 April 2024
Sukmin Cho
Soyeong Jeong
Jeongyeon Seo
Taeho Hwang
Jong C. Park
    SILM
    AAML
ArXivPDFHTML
Abstract

The robustness of recent Large Language Models (LLMs) has become increasingly crucial as their applicability expands across various domains and real-world applications. Retrieval-Augmented Generation (RAG) is a promising solution for addressing the limitations of LLMs, yet existing studies on the robustness of RAG often overlook the interconnected relationships between RAG components or the potential threats prevalent in real-world databases, such as minor textual errors. In this work, we investigate two underexplored aspects when assessing the robustness of RAG: 1) vulnerability to noisy documents through low-level perturbations and 2) a holistic evaluation of RAG robustness. Furthermore, we introduce a novel attack method, the Genetic Attack on RAG (\textit{GARAG}), which targets these aspects. Specifically, GARAG is designed to reveal vulnerabilities within each component and test the overall system functionality against noisy documents. We validate RAG robustness by applying our \textit{GARAG} to standard QA datasets, incorporating diverse retrievers and LLMs. The experimental results show that GARAG consistently achieves high attack success rates. Also, it significantly devastates the performance of each component and their synergy, highlighting the substantial risk that minor textual inaccuracies pose in disrupting RAG systems in the real world.

View on arXiv
Comments on this paper