ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.14228
23
0

A Survey of Decomposition-Based Evolutionary Multi-Objective Optimization: Part II -- A Data Science Perspective

22 April 2024
Mingyu Huang
Ke Li
ArXivPDFHTML
Abstract

This paper presents the second part of the two-part survey series on decomposition-based evolutionary multi-objective optimization where we mainly focus on discussing the literature related to multi-objective evolutionary algorithms based on decomposition (MOEA/D). Complementary to the first part, here we employ a series of advanced data mining approaches to provide a comprehensive anatomy of the enormous landscape of MOEA/D research, which is far beyond the capacity of classic manual literature review protocol. In doing so, we construct a heterogeneous knowledge graph that encapsulates more than 5,400 papers, 10,000 authors, 400 venues, and 1,600 institutions for MOEA/D research. We start our analysis with basic descriptive statistics. Then we delve into prominent research/application topics pertaining to MOEA/D with state-of-the-art topic modeling techniques and interrogate their sptial-temporal and bilateral relationships. We also explored the collaboration and citation networks of MOEA/D, uncovering hidden patterns in the growth of literature as well as collaboration between researchers. Our data mining results here, combined with the expert review in Part I, together offer a holistic view of the MOEA/D research, and demonstrate the potential of an exciting new paradigm for conducting scientific surveys from a data science perspective.

View on arXiv
Comments on this paper